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INTRODUCTION
Inverse problems in option pricing and corresponding reg-

ularization approaches including convergence rates results have
found increasing interest in the past ten years. Substantial con-
tributions to that topic have been published, for example, by
Bouchouev & Isakov 1997 and 1999, Lagnado & Osher 1997,
Jackson, Süli & Howison 1998, Crépey 2003, and Egger & Engl
2005.

In the first part of this presentation, we consider a specific
nonlinear inverse problem of this scenery, the problem of cal-
ibrating a purely time-dependent volatility function σ(t) of a
price process X(t) for an asset satisfying the stochastic differ-
ential equation

dX(t)
X(t)

= µdt +σ(t)dW (t) (t ≥ 0, X∗ = X(0) > 0)

with standard Wiener process W (t) and drift µ. The calibration
is to be done for a fixed time interval [0,T ] based on maturity-
dependent prices u(t) (0 ≤ t ≤ T ) of European vanilla call op-
tions with fixed strike K∗ > 0, see [1].

Inverse problems in option pricing are frequently regarded as
simple and resolved if a formula of Black-Scholes-type defines
the forward operator. However, precisely because the structure of
such problems is straightforward, they may serve as benchmark
problems for studying the nature of ill-posedness occurring in
the context of volatility calibration. Moreover, by following the
decoupling approach suggested in [2] variants of this benchmark
problem also occur as serious subproblems for the recovery of
local volatility surfaces. Such surfaces are of considerable prac-
tical importance in finance.

ILL-POSEDNESS OF THE INVERSE PROBLEM AND
THE PROBLEM DECOMPOSITION

Setting a(t) := σ2(t) and [J a](t) :=
tR

0
a(τ)dτ (0≤ t ≤ T ) the

inverse problem can be formulated as an operator equation

F(a) = u, (1)

where the nonlinear forward operator F : D(F)⊂ B1→ B2 with
half-space domain D(F) maps between Banach or Hilbert spaces
B1 and B2 of continuous or integrable functions over the interval
[0,T ]. The associated forward operator F : a 7→ u has the form

[F(a)](t) := UBS(X∗,K∗,r∗, t, [Ja](t)) (0≤ t ≤ T )

with Black-Scholes function UBS having the current asset price
X∗, the strike price K∗ and the risk-free interest rate r∗ as param-
eters. In other words, we have a composition F = N ◦ J with the
nonlinear Nemytskii operator [N(S)](t) := k(t,S(t)) (0≤ t ≤ T )
for

k(t,v) = UBS(X∗,K∗,r∗, t,v) ((t,v) ∈ [0,T ]× [0,∞)).

Consequently, the operator equation (1) can be decomposed into
a nonlinear outer equation

N(S) = u, (2)

and a linear inner equation.

J a = S. (3)
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Since J is compact for spaces B1 and B2 of continuous or
integrable functions, it is well-known that (3) is moderately ill-
posed. We show the continuity of N, which implies the compact-
ness of F . Hence the total inverse problem (1) is ill-posed and its
stable approximate solution requires the use of a regularization
method.

ILL-CONDITIONING OF THE NONLINEAR OUTER
PROBLEM

We emphasize that properties of the outer nonlinear prob-
lem (2) depend on the choice of the function spaces B1 and B2,
respectively their specific norms under consideration. So it can
be shown that (2) is ill-posed in B1 = B2 = L2(0,T ), but well-
posed in B1 = B2 = C[0,T ]. In the latter case, however, at least a
significant ill-conditioning effect can be observed by numerical
case studies.

CONVERGENCE RATES FOR THE TIKHONOV REGU-
LARIZATION

Using a Hilbert space setting we analyze the convergence
of the Tikhonov regularization for the inverse problem (1). The
nature of ill-posedness of the nonlinear composition problem is
considered by means of the character of regularized solutions us-
ing Tikhonov’s method. In particular, there is given a detailed
analysis of convergence rates including the interpretation of cor-
responding source conditions, which are related to multiplication
operators, see [3]. This analysis only applies for options in the
money and out of the money, i.e., for X∗ 6= K∗.

THE SINGULAR CASE OF AT-THE-MONEY OPTIONS
The second part of this presentation is concerned with the

singular case of at-the-money options with X∗ = K∗, which plays
an interesting role for the benchmark problem. For that case
the Fréchet derivative F ′(a) of the forward operator degener-
ates. Consequently, the classical analysis of convergence rates
originally established by Engl, Kunisch & Neubauer 1989 can-
not be applied directly. The talk presents an alternative approach
based on Bregman distances bridging the gap between this sin-
gular case and the case of in-the-money and out-of-the-money
options with respect to the benchmark problem, see [4].
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